Publications
Permanent URI for this collection
Browse
Browsing Publications by Author "Abhale, P. B."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- PublicationDevelopment of 2D Steady-State Mathematical Model for Blast Furnace Using OpenFOAM®(2022-12-01)
;Abhale, P. B. ;Nag, S. ;Bapat, Y. ;Kulkarni, A. ;Viswanathan, N. N.Padmapal,Blast furnaces remained the primary producer of hot metal iron despite the competition posed by alternating iron-making processes for the last 50 years. Possibly, when the hydrogen economy becomes a reality, its importance may fade sometime in the distant future. Mathematical modeling and simulation played a crucial role in gaining insights and thereby helped to optimize the process. Authors opine that commercial CFD packages do not offer enough flexibility to incorporate additional physics needed to develop simulation tools for complex processes like a blast furnace. Also, such solutions are not amenable to online deployment for use in operations. Thus, most of the models presented in the literature were developed from scratch by various researchers. However, these codes are neither efficient in computation, suitable for a parallel run nor better in robustness. In this context, to take advantage of new computational paradigms in terms of flexibility offered through open-source codes, in conjunction with parallelization, a comprehensive 2D blast furnace model has been developed using OpenFOAM®. In essence, it has opened a new pathway towards achieving an online digital twin for a complex process such as a blast furnace. The researchers have used standard heat, mass, and momentum balance equations. However, equations do differ when it comes to reaction kinetics, melting phenomena, etc. In the present study, the melting model uses the beginning of softening and the end of melting temperatures to calculate the liquid fraction formed, which is linearly changing with temperature. This has resulted in improved convergence. The model equations and their implementation in OpenFOAM® are presented in detail. As opposed to the prior art of the blast furnace simulation models, the present study demonstrates the grid independence, as well as the convergence of the fusion zone. The model predicts the size and shape of the cohesive zone and is shown to be capable of simulating various scenarios involving different burden distributions and other operating parameters through a parametric study.