Options
Harit, Gaurav
Loading...
Preferred name
Harit, Gaurav
Alternative Name
Harit, G.
HARIT G.A.U.R.A.V.
Harit G.
Main Affiliation
Email
ORCID
Scopus Author ID
Researcher ID
11 results
Now showing 1 - 10 of 11
- PublicationWord Spotting in Cluttered Environment(2020-01-01)
;Srivastava, DivyaIn this paper, we present a novel problem of handwritten word spotting in cluttered environment where a word is cluttered by a strike-through with a line stroke. These line strokes can be straight, slant, broken, continuous, or wavy in nature. Vertical Projection Profile (VPP) feature and its modified version, which is the combinatorics Vertical Projection Profile (cVPP) feature is extracted and aligned by modified Dynamic Time Warping (DTW) algorithm. The dataset for the proposed problem is not available so we prepared our dataset. We compare our method with Rath and Manmath [6], and PHOCNET [17] for handwritten word spotting in the presence of strike-through, and achieve better results.Scopus© Citations 1 - PublicationCell Extraction and Horizontal-Scale Correction in Structured Documents(2020-01-01)
;Srivastava, DivyaPreprocessing techniques form an important task in document image analysis. In structured documents like forms, cheques, etc., there is a predefined space called frame field/cell for the user to fill the entry. When the user is writing, the nonuniformity of inter-character spacing becomes an issue. Many times, the starting characters of the word are written with sparse spacing between the characters and then gradually with a more compact spacing so as to accommodate the word within the frame field. To deal with this variation in intra-word spacing, horizontal-scale correction is applied to the extracted form fields. The effectiveness of the system is proved by applying it as a preprocessing step in a recognition system proposed in (Almazán et al. in Pattern Anal Mach Intell 36(12):21552–2566, 2014 [2]). The recognition framework results in reduced error rates with this normalization. - PublicationTransDocAnalyser: A Framework for Semi-structured Offline Handwritten Documents Analysis with an Application to Legal Domain(2023-01-01)
;Chakraborty, Sagar; Ghosh, SaptarshiState-of-the-art offline Optical Character Recognition (OCR) frameworks perform poorly on semi-structured handwritten domain-specific documents due to their inability to localize and label form fields with domain-specific semantics. Existing techniques for semi-structured document analysis have primarily used datasets comprising invoices, purchase orders, receipts, and identity-card documents for benchmarking. In this work, we build the first semi-structured document analysis dataset in the legal domain by collecting a large number of First Information Report (FIR) documents from several police stations in India. This dataset, which we call the FIR dataset, is more challenging than most existing document analysis datasets, since it combines a wide variety of handwritten text with printed text. We also propose an end-to-end framework for offline processing of handwritten semi-structured documents, and benchmark it on our novel FIR dataset. Our framework used Encoder-Decoder architecture for localizing and labelling the form fields and for recognizing the handwritten content. The encoder consists of Faster-RCNN and Vision Transformers. Further the Transformer-based decoder architecture is trained with a domain-specific tokenizer. We also propose a post-correction method to handle recognition errors pertaining to the domain-specific terms. Our proposed framework achieves state-of-the-art results on the FIR dataset outperforming several existing models.Scopus© Citations 2 - PublicationAttributed Paths for Layout-Based Document Retrieval(2019-01-01)
;Sharma, Divya; Chattopadhyay, ChiranjoyA document is rich in its layout. The entities of interest can be scattered over the document page. Traditional layout matching has involved modeling layout structure as grids, graphs, and spatial histograms of patches. In this paper we propose a new way of representing layout, which we call attributed paths. This representation admits a string edit distance based match measure. Our experiments show that layout based retrieval using attributed paths is computationally efficient and more effective. It also offers flexibility in tuning the match criterion. We have demonstrated effectiveness of attributed paths in performing layout based retrieval tasks on datasets of floor plan images [14] and journal pages [1].Scopus© Citations 3 - PublicationSymbol Spotting in Offline Handwritten Mathematical Expressions(2019-01-01)
;Aggarwal, Ridhi; Recognition of touching characters in mathematical expressions is a challenging problem in the field of document image analysis. Various approaches for recognizing touching maths symbols have been reported in literature, but they mainly dealt with printed expressions and handwritten numeral strings. In this work, a new segmentation-free approach is proposed which matches convex shape portions of symbols occurring in various layout such as subscript, superscript, fraction etc. and is able to perform spotting of symbols present in a handwritten expression. Our contribution lies in the design of a novel feature which can handle touching symbols effectively in the presence of handwriting variations. This recognition-based approach helps in spotting symbols in an expression even in the presence of clutter created by the presence of other symbols.Scopus© Citations 2 - PublicationDocDescribor: Digits + Alphabets + Math Symbols - A Complete OCR for Handwritten Documents(2020-01-01)
;Aggarwal, Ridhi ;Jain, Hiteshi; This paper presents an Optical Character Recognition (OCR) system for documents with English text and mathematical expressions. Neural network architectures using CNN layers and/or dense layers achieve high level accuracy in character recognition task. However, these models require large amount of data to train the network, with balanced number of samples for each class. Recognition of mathematical symbols poses challenges of the imbalance and paucity of training data available. To address this issue, we pose the character recognition problem as a Distance Metric Learning problem. We propose a Siamese-CNN Network that learns discriminative features to identify if the two images in a pair contain similar or dissimilar characters. The network is then used to recognize different characters by character matching where test images are compared to sample images of any target class which may or may not be included during training. Thus our model can scale to new symbols easily. The proposed approach is invariant to author’s handwriting. Our model has been tested over images extracted from a dataset of scanned answer scripts collected by us. It is seen that our approach achieves comparable performance to other architectures using convolutional layers or dense layers while using lesser training data. - PublicationStructural Analysis of Offline Handwritten Mathematical Expressions(2020-01-01)
;Aggarwal, Ridhi; Structural analysis helps in parsing the mathematical expressions. Various approaches for structural analysis have been reported in literature, but they mainly deal with online and printed expressions. In this work, two-dimensional, stochastic context-free grammar is used for the structural analysis of offline handwritten mathematical expressions in a document image. The spatial relation between characters in an expression has been incorporated so that the structural variability in handwritten expressions can be tackled.Scopus© Citations 1 - PublicationLearning Partially Shared Dictionaries for Domain Adaptation(2015-01-01)
;Ranjan, Viresh; Jawahar, C. V.Real world applicability of many computer vision solutions is constrained by the mismatch between the training and test domains. This mismatch might arise because of factors such as change in pose, lighting conditions, quality of imaging devices, intra-class variations inherent in object categories etc. In this work, we present a dictionary learning based approach to tackle the problem of domain mismatch. In our approach, we jointly learn dictionaries for the source and the target domains. The dictionaries are partially shared, i.e. some elements are common across both the dictionaries. These shared elements can represent the information which is common across both the domains. The dictionaries also have some elements to represent the domain specific information. Using these dictionaries, we separate the domain specific information and the information which is common across the domains. We use the latter for training cross-domain classifiers i.e., we build classifiers that work well on a new target domain while using labeled examples only in the source domain. We conduct cross-domain object recognition experiments on popular benchmark datasets and show improvement in results over the existing state of art domain adaptation approaches.Scopus© Citations 2 - PublicationWriter identification for handwritten words(2016-01-01)
;Pandey, ShilpaIn this work we present a framework for recognizing writer for a handwritten word. We make use of allographic features at sub-word level. Our work is motivated by previous techniques which make use of a codebook. However, instead of encoding the features using the code-words, we exploit the discriminative properties of features that belong to the same cluster, in a supervised approach. We are able to achieve writer identification rates close to 63% on the handwritten words drawn from a dataset by 10 writers. Our work has application in scenarios where multiple writers write/annotate on the same page.