Options
Sinha, Monika
Loading...
Preferred name
Sinha, Monika
Alternative Name
Sinha, M.
Sinha M.
Main Affiliation
Web Site
Email
Scopus Author ID
Researcher ID
6 results
Now showing 1 - 6 of 6
- PublicationDense Matter in Strong Magnetic Field: Covariant Density Functional Approach(2022-01-01)
;Thapa, Vivek Baruah; ;Li, Jia JieSedrakian, ArmenThe existence of compact stars with high mass (> 2 M⊙ ) raises the possibility of the appearance of heavy baryons at high-density regimes.With this possibility, we study the effect of a strong magnetic field on the matter composed of baryon-octet and Δ -resonances under strong magnetic fields.The functionals in the hyperonic sector are constrained by the Λ, Ξ- hypernuclei data from terrestrial experiments.Δ -resonance sector is constrained by studies of their scattering off nuclei and heavy-ion collisions.The main effect of the magnetic field is shown to be the oscillations of various matter properties, viz., particle populations and Dirac effective mass with density resulting from the occupation of the Landau level by charged fermions in strong magnetic fields. - PublicationMassive Δ -resonance admixed hypernuclear stars with antikaon condensations(2021-03-03)
;Thapa, Vivek Baruah; ;Li, Jia JieSedrakian, ArmenIn this work, we study the effect of (anti)kaon condensation on the properties of compact stars that develop hypernuclear cores with and without an admixture of Δ-resonances. We work within the covariant density functional theory with the parameters adjusted to K-atomic and kaon-nucleon scattering data in the kaonic sector. The density-dependent parameters in the hyperonic sector are adjusted to the data on Λ and Ξ- hypernuclei data. The Δ-resonance couplings are tuned to the data obtained from their scattering off nuclei and heavy-ion collision experiments. We find that (anti)kaon condensate leads to a softening of the equation of state and lower maximum masses of compact stars than in the absence of the condensate. Both the K- and K̄0 condensations occur through a second-order phase transition, which implies no mixed-phase formation. For large values of (anti)kaon and Δ-resonance potentials in symmetric nuclear matter, we observe that condensation leads to an extinction of Ξ-,0 hyperons. We also investigate the influence of inclusion of additional hidden-strangeness σ∗ meson in the functional and find that it leads to a substantial softening of the equation of state and delay in the onset of (anti)kaons.Scopus© Citations 29 - PublicationHypernuclear matter in strong magnetic field(2013-01-17)
; ;Mukhopadhyay, BanibrataSedrakian, ArmenCompact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 1014-1015 G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta-Bodmer-Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B ≥ 1017 G, in particular the matter properties become anisotropic. Moreover, for the central fields B ≥ 1018 G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value Bcr ≃ 1019 G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value Bcr. © 2012 Elsevier B.V..Scopus© Citations 59 - PublicationEquation of State of Strongly Magnetized Matter with Hyperons and Δ-Resonances(2020-12-01)
;Thapa, Vivek Baruah; ;Li, Jia JieSedrakian, ArmenWe construct a new equation of state for the baryonic matter under an intense magnetic field within the framework of covariant density functional theory. The composition of matter includes hyperons as well as (Formula presented.) -resonances. The extension of the nucleonic functional to the hypernuclear sector is constrained by the experimental data on (Formula presented.) and (Formula presented.) -hypernuclei. We find that the equation of state stiffens with the inclusion of the magnetic field, which increases the maximum mass of neutron star compared to the non-magnetic case. In addition, the strangeness fraction in the matter is enhanced. Several observables, like the Dirac effective mass, particle abundances, etc. show typical oscillatory behavior as a function of the magnetic field and/or density which is traced back to the occupation pattern of Landau levels.Scopus© Citations 22 - PublicationMagnetar superconductivity versus magnetism: Neutrino cooling processes(2015-03-30)
; Sedrakian, ArmenWe describe the microphysics, phenomenology, and astrophysical implication of a B-field induced unpairing effect that may occur in magnetars, if the local B field in the core of a magnetar exceeds a critical value Hc2. Using the Ginzburg-Landau theory of superconductivity, we derive the Hc2 field for proton condensate taking into the correction (≤30%) which arises from its coupling to the background neutron condensate. The density dependence of pairing of proton condensate implies that Hc2 is maximal at the crust-core interface and decreases towards the center of the star. As a consequence, magnetar cores with homogenous constant fields will be partially superconducting for "medium-field" magnetars (1015≤B≤5×1016G) whereas "strong-field" magnetars (B>5×1016G) will be void of superconductivity. The neutrino emissivity of a magnetar's core changes in a twofold manner: (i) the B-field assisted direct Urca process is enhanced by orders of magnitude, because of the unpairing effect in regions where B≥Hc2; (ii) the Cooper-pair breaking processes on protons vanish in these regions and the overall emissivity by the pair-breaking processes is reduced by a factor of only a few.Scopus© Citations 47 - PublicationFrom microphysics to dynamics of magnetars(2017-06-13)
;Sedrakian, Armen ;Huang, Xu Guang; Clark, John W.MeV-scale magnetic fields in the interiors of magnetars suppress the pairing of neutrons and protons in the S-wave state. In the case of a neutron condensate the suppression is the consequence of the Pauli-paramagnetism of the neutron gas, i.e., the alignment of the neutron spins along the magnetic field. The proton S-wave pairing is suppressed because of the Landau diamagnetic currents of protons induced by the field. The Ginzburg-Landau and BCS theories of the critical magnetic fields for unpairing are reviewed. The macrophysical implications of the suppression (unpairing) of the condensates are discussed for the rotational crust-core coupling in magnetars and the neutrino-dominated cooling era of their thermal evolution.Scopus© Citations 9