Options
Microstructure and texture evolution during incremental sheet forming of AA1050 alloy
Journal
Journal of Materials Science
ISSN
00222461
Date Issued
2022-03-01
Author(s)
Kumar, Abhishek
Shrivastava, Amber
Narasimhan, K.
Mishra, Sushil
Abstract
In incremental sheet forming higher limiting strain can be achieved compared to the conventional sheet metal forming process, which results in increased formability. The higher level of strain may be accompanied by non-uniform thinning. Thus, the different sections in a component may undergo different levels of deformation. In the present work a truncated cone of AA1050 H14 alloy was formed using the incremental sheetmetal forming (ISF) technique. The deformation mechanism during ISF was studied by investigating the microstructural and texture evolution in the truncated cone along the thickness of the cone wall. High resolution electron backscatter diffraction was performed at different sections of the formed truncated cone. The results show the formation of subgrains in different sections of the cone. At higher strains, grains become thin and elongated which results in grain fragmentation and formation of small grains. These small grains undergo complete recovery process and new grain boundaries (low and high angle) are formed within the thin elongated grains. Further, the evolution of shear texture shows the evidence of shear mode of deformation during incremental sheet forming. Thus, the presence of through thickness shear could be used for understanding the higher forming limit in the ISF process.