Options
Translationally Controlled Tumor Protein_Mediated Stabilization of Host Antiapoptotic Protein MCL-1 Is Critical for Establishment of Infection by Intramacrophage Parasite Leishmania donovani
Journal
Journal of Immunology
ISSN
00221767
Date Issued
2022-06-01
Author(s)
Giri, Jayeeta
Basu, Moumita
Roy, Shalini
Mishra, Tarun
Jana, Kuladip
Chande, Ajit
Ukil, Anindita
Abstract
In the early phase of infection, the intramacrophage pathogen Leishmania donovani protects its niche with the help of the antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Whether Leishmania could exploit MCL-1, an extremely labile protein, at the late phase is still unclear. A steady translational level of MCL-1 observed up to 48 h postinfection and increased caspase-3 activity in MCL-1-silenced infected macrophages documented its importance in the late hours of infection. The transcript level of MCL-1 showed a sharp decline at 6 h postinfection, and persistent MCL-1 expression in cyclohexamide-treated cells negates the possibility of de novo protein synthesis, thereby suggesting infection-induced stability. Increased ubiquitination, a prerequisite for proteasomal degradation of MCL-1, was also found to be absent in the late hours of infection. Lack of interaction with its specific E3 ubiquitin ligase MULE (MCL-1 ubiquitin ligase E3) and specific deubiquitinase USP9X prompted us to search for blockade of the ubiquitin-binding site in MCL-1. To this end, TCTP (translationally controlled tumor protein), a well-known binding partner of MCL-1 and antiapoptotic regulator, was found to be strongly associated with MCL-1 during infection. Phosphorylation of TCTP, a requirement for MCL-1 binding, was also increased in infected macrophages. Knockdown of TCTP decreased MCL-1 expression and short hairpin RNA-mediated silencing of TCTP in an infected mouse model of visceral leishmaniasis showed decreased parasite burden and induction of liver cell apoptosis. Collectively, our investigation revealed a key mechanism of how L. donovani exploits TCTP to establish infection within the host.