Options
Strong influence of north Pacific Ocean variability on Indian summer heatwaves
Journal
Nature Communications
Date Issued
2022-12-01
Author(s)
Hari, Vittal
Ghosh, Subimal
Zhang, Wei
Kumar, Rohini
Abstract
Increased occurrence of heatwaves across different parts of the world is one of the characteristic signatures of anthropogenic warming. With a 1.3 billion population, India is one of the hot spots that experience deadly heatwaves during May-June – yet the large-scale physical mechanism and teleconnection patterns driving such events remain poorly understood. Here using observations and controlled climate model experiments, we demonstrate a significant footprint of the far-reaching Pacific Meridional Mode (PMM) on the heatwave intensity (and duration) across North Central India (NCI) – the high risk region prone to heatwaves. A strong positive phase of PMM leads to a significant increase in heatwave intensity and duration over NCI (0.8-2 °C and 3–6 days; p < 0.05) and vice-versa. The current generation (CMIP6) climate models that adequately capture the PMM and their responses to NCI heatwaves, project significantly higher intensities of future heatwaves (0.5-1 °C; p < 0.05) compared to all model ensembles. These differences in the intensities of heatwaves could significantly increase the mortality (by ≈150%) and therefore can have substantial implications on designing the mitigation and adaptation strategies.
Volume
13