Options
Impact of highest maximum sustained wind speed and its duration on storm surges and hydrodynamics along Krishna–Godavari coast
Journal
Climate Dynamics
ISSN
09307575
Date Issued
2022-08-01
Author(s)
Sebastian, Maneesha
Behera, Manasa Ranjan
Abstract
The storm surge and hydrodynamics along the Krishna–Godavari (K–G) basin are examined based on numerical experiments designed from assessing the landfalling cyclones in Bay of Bengal (BoB) over the past 38 years with respect to its highest maximum sustained wind speed and its duration. The model is validated with the observed water levels at the tide gauge stations at Visakhapatnam during 2013 Helen and 2014Hudhud. Effect of gradual and rapid intensification of cyclones on the peak water levels and depth average currents are examined and the vulnerable locations are identified. The duration of intensification of a rapidly intensifying cyclone over the continental shelf contributed to about 10–18% increase in the peak water levels, whereas for the gradually intensifying cyclone the effect is trivial. The inclusion of the wave-setup increased the peak water levels up to 39% compared to those without wave-setup. In the deep water region, only rapidly intensifying cyclones affected the peak MWEs. Intensification over the continental slope region significantly increases the currents along the shelf region and coast. The effect on peak maximum depth averaged current extends up to 400 km from the landfall location. Thus, it is necessary to consider the effect of various combinations of the highest cyclone intensity and duration of intensification for identifying the worst scenarios for impact assessment of coastal processes and sediment transport. The study is quite useful in improving the storm surge prediction, in preparedness, risk evaluation, and vulnerability assessment of the coastal regions in the present changing climate.
Volume
59
Publication link
Subjects