Options
Few-Shot Open-Set Recognition of Hyperspectral Images with Outlier Calibration Network
Journal
Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022
Date Issued
2022-01-01
Author(s)
Pal, Debabrata
Bundele, Valay
Sharma, Renuka
Banerjee, Biplab
Jeppu, Yogananda
Abstract
We tackle the few-shot open-set recognition (FSOSR) problem in the context of remote sensing hyperspectral image (HSI) classification. Prior research on OSR mainly considers an empirical threshold on the class prediction scores to reject the outlier samples. Further, recent endeavors in few-shot HSI classification fail to recognize outliers due to the 'closed-set' nature of the problem and the fact that the entire class distributions are unknown during training. To this end, we propose to optimize a novel outlier calibration network (OCN) together with a feature extraction module during the meta-training phase. The feature extractor is equipped with a novel residual 3D convolutional block attention network (R3CBAM) for enhanced spectral-spatial feature learning from HSI. Our method rejects the outliers based on OCN prediction scores barring the need for manual thresholding. Finally, we propose to augment the query set with synthesized support set features during the similarity learning stage in order to combat the data scarcity issue of few-shot learning. The superiority of the proposed model is showcased on four benchmark HSI datasets. 1
Subjects