Options
Quantifiable identification of flow-limited ventilator dyssynchrony with the deformed lung ventilator model
Journal
Computers in Biology and Medicine
ISSN
00104825
Date Issued
2024-05-01
Author(s)
Agrawal, Deepak K.
Smith, Bradford J.
Sottile, Peter D.
Hripcsak, George
Albers, David J.
Abstract
Background: Ventilator dyssynchrony (VD) can worsen lung injury and is challenging to detect and quantify due to the complex variability in the dyssynchronous breaths. While machine learning (ML) approaches are useful for automating VD detection from the ventilator waveform data, scalable severity quantification and its association with pathogenesis and ventilator mechanics remain challenging. Objective: We develop a systematic framework to quantify pathophysiological features observed in ventilator waveform signals such that they can be used to create feature-based severity stratification of VD breaths. Methods: A mathematical model was developed to represent the pressure and volume waveforms of individual breaths in a feature-based parametric form. Model estimates of respiratory effort strength were used to assess the severity of flow-limited (FL)-VD breaths compared to normal breaths. A total of 93,007 breath waveforms from 13 patients were analyzed. Results: A novel model-defined continuous severity marker was developed and used to estimate breath phenotypes of FL-VD breaths. The phenotypes had a predictive accuracy of over 97% with respect to the previously developed ML-VD identification algorithm. To understand the incidence of FL-VD breaths and their association with the patient state, these phenotypes were further successfully correlated with ventilator-measured parameters and electronic health records. Conclusion: This work provides a computational pipeline to identify and quantify the severity of FL-VD breaths and paves the way for a large-scale study of VD causes and effects. This approach has direct application to clinical practice and in meaningful knowledge extraction from the ventilator waveform data.
Volume
173
Subjects