Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Inflibnet
  3. Publications
  4. Exploring structural, magnetic and dielectric properties of Ba1−xCoxFe12O19 hexaferrites
 
  • Details
Options

Exploring structural, magnetic and dielectric properties of Ba1−xCoxFe12O19 hexaferrites

Journal
Journal of Materials Science Materials in Electronics
ISSN
09574522
Date Issued
2024-04-01
Author(s)
Kalariya, Aryan
Gupta, Tanuj 
Chauhan, Chetna C.
Jotania, Rajshree B.
DOI
10.1007/s10854-024-12441-7
Abstract
This article presents a comprehensive investigation into the structural, magnetic, and dielectric properties of Ba<inf>1−x</inf>Co<inf>x</inf>Fe<inf>12</inf>O<inf>19</inf> (x = 0.00, 0.10, 0.20, 0.30, 0.40 and 0.50) prepared at 1100 °C using the heat treatment method. The FTIR analysis revealed the formation of the ferrite phase. XRD analysis provided valuable crystallographic parameters and confirmed the formation of M-type hexaferrites along with a BaFe<inf>2</inf>O<inf>4</inf> phase. TGA investigations elucidated the thermal stability after 600 °C. VSM measurements unveiled the variation in magnetic saturation with cobalt substitutions from 24.390 to 41.629 Am<sup>2</sup> kg<sup>−1</sup>; coercivity from 1508 to 3577 Oe. Formed samples are magnetically hard in nature. The dielectric measurements indicate that the conduction observed at low frequencies can be attributed to the presence of grain boundaries, while the conduction observed at higher frequencies is mostly influenced by the grains themselves. All samples have a frequency-dependent increase in AC conductivity. These findings contribute to the understanding of its potential applications in the automotive industry, sensors, biomedical applications and related fields.
Volume
35
Indian Institute of Technology Jodhpur Knowledge Repository developed and maintained by the Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback