Options
Preparation, cytotoxicity, and in vitro bioimaging of water soluble and highly fluorescent palladium nanoclusters
Journal
Bioengineering
Date Issued
2020-03-01
Author(s)
Thangudu, Suresh
Kalluru, Poliraju
Vankayala, Raviraj
Abstract
Fluorescent probes offer great potential to identify and treat surgical tumors by clinicians. To this end, several molecular probes were examined as in vitro and in vivo bioimaging probes. However, due to their ultra-low extinction coefficients as well as photobleaching problems, conventional molecular probes limit its practical utility. To address the above mentioned challenges, metal nanoclusters (MNCs) can serve as an excellent alternative with many unique features such as higher molar extinction coefficients/light absorbing capabilities, good photostability and appreciable fluorescence quantum yields. Herein, we reported a green synthesis of water soluble palladium nanoclusters (Pd NCs) and characterized them by using various spectroscopic and microscopic characterization techniques. These nanoclusters showed excellent photophysical properties with the characteristic emission peak centered at 500 nm under 420 nm photoexcitation wavelength. In vitro cytotoxicity studies in human cervical cancer cells (HeLa) cells reveal that Pd NCs exhibited good biocompatibility with an IC50 value of >100 μg/mL and also showed excellent co-localization and distribution throughout the cytoplasm region with a significant fraction translocating into cell nucleus. We foresee that Pd NCs will carry huge potential to serve as a new generation bioimaging nanoprobe owing to its smaller size, minimal cytotoxicity, nucleus translocation capability and good cell labelling properties.