Options
Divergence Error Based p-Adaptive Discontinuous Galerkin Solution of Time-domain Maxwell's Equations
Journal
Progress In Electromagnetics Research B
ISSN
19376472
Date Issued
2022-01-01
Author(s)
Tiwari, Apurva
Chatterjee, Avijit
Abstract
A p-adaptive discontinuous Galerkin time-domain method is developed to obtain high-order solutions to electromagnetic scattering problems. A novel feature of the proposed method is the use of divergence error to drive the p-adaptive method. The nature of divergence error is explored, and that it is a direct consequence of the act of discretization is established. Its relation with relative truncation error is formed which enables the use of divergence error as an inexpensive proxy to truncation error. Divergence error is used as an indicator to dynamically identify and assign spatial operators of varying accuracy to substantial regions in the computational domain. This results in a reduced computational cost compared to a comparable discontinuous Galerkin time-domain solution using uniform degree piecewise polynomial bases throughout. Numerical results are presented to show performance of the proposed divergence error based p-adaptive solutions. It is shown that an accuracy similar to that of uniformly higher order solutions is obtained in terms of the scattering width, using fewer degrees of freedom