Options
MemStream: Memory-Based Streaming Anomaly Detection
Journal
WWW 2022 - Proceedings of the ACM Web Conference 2022
Date Issued
2022-04-25
Author(s)
Bhatia, Siddharth
Jain, Arjit
Srivastava, Shivin
Kawaguchi, Kenji
Hooi, Bryan
Abstract
Given a stream of entries over time in a multi-dimensional data setting where concept drift is present, how can we detect anomalous activities? Most of the existing unsupervised anomaly detection approaches seek to detect anomalous events in an offline fashion and require a large amount of data for training. This is not practical in real-life scenarios where we receive the data in a streaming manner and do not know the size of the stream beforehand. Thus, we need a data-efficient method that can detect and adapt to changing data trends, or concept drift, in an online manner. In this work, we propose MemStream, a streaming anomaly detection framework, allowing us to detect unusual events as they occur while being resilient to concept drift. We leverage the power of a denoising autoencoder to learn representations and a memory module to learn the dynamically changing trend in data without the need for labels. We prove the optimum memory size required for effective drift handling. Furthermore, MemStream makes use of two architecture design choices to be robust to memory poisoning. Experimental results show the effectiveness of our approach compared to state-of-the-art streaming baselines using 2 synthetic datasets and 11 real-world datasets.
Subjects