Options
Metal Nanocomposite Synthesis and Its Application in Electrochemical CO<inf>2</inf> Reduction
Journal
Energy, Environment, and Sustainability
ISSN
25228366
Date Issued
2022-01-01
Author(s)
Sharma, Rishabh
Kalbar, Pradip
Srivastav, Simant Kumar
Kumar, Kamlesh
Singh, Swatantra P.
Abstract
To address the immoderate emission of carbon dioxide (CO2), the development of earth-excessive metals and non-metals based electrocatalyst is of great importance. The development of an active electrocatalyst with cost-effective, efficient, and easy accessibility for electrochemical-based CO2 reduction (ECR), is a growing field of research. Growing industries and urban populations lead to increased pollution generation, especially air pollution causing serious environmental and health problems and causing deterioration of air quality. Non-conventional energy-based ECR to alternative substitutes with heavy energy densities proves to be an effective route for production and storage of energy and manage the carbon and energy balance. For an efficient yield of chosen products, the modification, outline, technology, and finding of new catalysts are important steps. In the present chapter, we have discussed heterostructures of catalysts, the tunable component for an effective CO2 conversion, and metal/metal oxide hybrids for enhancing CO2 reduction capability, and an alliance between different nanocomposites for efficient reduction processes. The accurate and precise tuning of interlinkage between dissimilar metal and metal oxides will enhance the reaction kinetics, maximize binding between intermediates, and accomplish effective ECR.
Subjects